C++ vs. Java

Valentin Ziegler
Fabio Fracassi

Tobias Germer
HU Berlin, February |6, 2017

think-cell ™

C++ vs. Java

Safe or unsafe!?
To garbage collect or not!?
Low level vs. high level
Machine code vs. byte code

Object-oriented vs. multi-paradigm

A\ (V)

Our obijective

|. Express programmer’s thoughts fully & clearly

2. Tell the machine what to do

Myth and Leqends

Chapter 1: Expressiveness

“C++ is just like C with support for Objects.”
“C++ code may be faster, but then also less readable.”
“Only use C++ for low-level, performance-critical code.”

“For high-level application code, better use Java.”

Contact* contactsEmployees; int noEmployees; int capEmployees;
Application* applications; int noApplications;
SearchTreeNode* rootidcontact;

for (int i=0; i<noApplications; ++i) {
if (applications[i].PassedTest()) {
SearchTreeNode* cur=rootidcontact;
SearchTreeNode* result=nullptr;
while(cur) {
if (!(applications[i].id<cur->id)) {
result=cur;
cur=cur->left;
} else {
cur=cur->right;
}
}

assert(result && result->id==applications[i].id);
if (capEmployees<=noEmployees) {
capEmployees*=2;
Contact* copy=malloc(capEmplotees*sizeof(Contact));
memcpy (copy, contactsEmployees, noEmployees*sizeof(Contact));
free(contactsEmployees);
contactsEmployees=copy;
}
memcpy (contactsEmployees+noEmployees, &result->contact, sizeof(Contact));
++noEmployees;

Modern C++ (think-cell Style)

std: :vector<Contact> employees;
std::vector<Application> applications;
std: :map<id_t, Contact> mapIdContact;

append(employees,
transform(

filter(applications,
mem_fn(&Application::PassedTest)

)>

[&] (auto const& application) {
return find<return_element>(

mapIdContact, application.id

)->second;

}
)
)5

Modern C++ (think-cell Style)

std: :vector<Contact> employees;
std::list<Application> applications; // instead of vector
std::unordered map<id _t, Contact> mapIdContact; // instead of map

append(employees,
transform(

filter(applications,
mem_fn(&Application::PassedTest)

)>

[&] (auto const& application) {
return find<return_element>(

mapIdContact, application.id

)->second;

}
)
)5

No-Overhead Data Structures
C++ v

size t s$=10000000; int s=10000000;
int* an=CreateArray(s); int an[]=CreateArray(s);
for(size t i=0; i<s; ++i) { for(int i=0; i<s; ++i) {
sum += an[i]; sum += an[i];
} Perf:1.0 ' Perf: 1.0
std: :vector<int> vec= ArrayList<Integer> al=
CreateVector(10000000) ; CreateArraylList(10000000) ;
size t s=vec.size(); int s=al.size();
for(size t i=0; i<s; ++i) { for(int i=0; i<s; ++i) {
sum += vec[i]; sum += al.get(i);
} }

Perf: 1.0 Perf: 3.5

Memory Layout

std::vector<int> v

Heap

begin end cap

A

Memory Layout

ArraylList<integer> al

header header
header -

\
header length

header

Heap

header

Stack

No-Overhead Data Structures
C++

std::vector<int> ArrayList<Integer>
Indirection for element access Single Three + offsets
Memory layout Contiguous, cache Non-contiguous
friendly
Heap operations upon At most O(log(n)) O(n)
construction (Best case One)
Heap operation upon One O(n)
destruction
Memory overhead compared None 400%

to native array

No-Cost Abstraction

auto v = std::vector<int>{};
for(int i = @; i<cElements; ++1i) {
sum+=v[i];

J Perf: 1.0

auto v = std::vector<int>{};
for(auto it=std::begin(v), end=std::end(v); it!=end; ++it) {
sum+=*it;
}
Perf: 1.0

auto v = std::vector<int>{};
for_each(v, [&](int i) { sum+=i; });

Perf: 1.0

No-Cost Abstraction

ArraylList<Integer> al = new ArrayList<Integer>();
for(int i = 9; i<cElements; ++i) {
sum+=al.get(i);

}
Perf: 3.5

ArraylList<Integer> al = new ArrayList<Integer>();
for(Iterator i = al.iterator(); i.hasNext();) {
sum+=(int)i.next();

}
Perf:5.1

ArraylList<Integer> al = new ArrayList<Integer>();
for(Integer i : al) {
sum+=(int)i;
}
Perf: 5.1

No-Cost Abstraction

ProTip:Always use index based loop in Java?

LinkedList<Integer> 11 = new LinkedList<Integer>();
for(int i = 9; 1<10000000; ++i) {

sum+=11.get(i);
}

Perf: about a week

A\ (V)

Beauty in Abstraction

bool b=any_ of(

transform(persons, mem_fn(&Person::TelephoneNumber)),
IsPrime

Ik

auto rngSquaredCircle=transform(
filter(shapes, mem_fn(&Shape::IsCircle),
[](auto& shp) { return ToSquare(shp); }
)

boost::range

Eric Niebler’s ranges v3

think-cell range library:
https://github.com/think-cell/range
https://www.think-cell.com/de/career/talks/ranges/
Getting standardized

https://github.com/think-cell/range
https://www.think-cell.com/de/career/talks/ranges/

Myth and Leqends

Chapter 1: Expregssibeness

With the advent of generic
“C++ is just live " “swith support for Objects.” Programming and lambda
“C++ code may be fastey put then also less readable.” expressions, C++ has evolved

“Only use C+~ 51 .ow-level, performance-critical code.” away from C and allows for more

functional style.
“For high-leve' application code, better use Java.”

Unlike Java, one can write code

in C++ that is both expressive
and efficient.

17

Mpth and Legends

Chapter 2: Pariables and Parameters

Java code is easy to understand because all we have is
Type var;

... where C++ has a whole mess of
Type var;
Type& var;
Type const& var;
Type* var;
std: :shared ptr<Type>

: Type of var is not Object
Object var;

Instead: pointer to Object

Everything is a pointer

(almost)

Value vs. Reference Semantics

Value Semantics Reference Semantics

Variable holds type value Variable is a pointer that allows indirect
access to the data

Java: primitive-types Java: object, all user defined types
C++: default C++: pointers, references, smart pointers
Copies do not alias: Copying a reference yields an alias

int a = create_int(); Object a = borrow object();
int b = a; Object b = a;

assert a == b; assert a == b;

modify value(b); modify object(b);

assert a != b; assert a == b;

assert !isModified(a); assert isModified(a);

20

Two Important Categories of
Data Types

* Objects
* Polymorphic
* Object has identity:
* Typically allocated on the heap
* Reference semantics

* Value-like (regular types)
* Value equality:
* Typically on the stack or in a container

Are all user defined types (UDTs)
always object-like?

* Point
* Complex number
* |terator

Value-like UDTs N

Point p= .. ;
for (int i=0; i<noPoints; ++i) {

myPoints[i] -= p; // operator overloading
}

Point2D p= .. ;
for (int i=0; i<noPoints; ++i) {
myPoints[i].setlLocation(
myPoints[i].getX()-p.getX(),
myPoints[i].getY()-p.getY()
)

23

Reference Semantics

T t,; T t;
Func(t); Func(t);

Will t be modified?

void Func(T const& t); public static void Func(T t);
void Func(T& t);

24

Reference Semantics

Foo foo; Foo foo;
auto t=foo.GetItem(); T t=foo.GetItem();

May return null?

T const& Foo::GetItem(); public T GetItem();
T const* Foo::GetItem();

25

Hlpth and Leqends
Chapter 2: Pariables and Parameters

Java code is easy to understand because all - C 44+ 3||ows you to state your intention:s.
we have is

Type var; Value semantics for regular types:

- easy to reason about (just like int),

++ . o . .
... where C++ has . ivhole mess of _ opt|m|zer-frlend|)'.

Typeves;

Ty 2& var;

7pe const& var; Reference semantics for object types:

‘ype* var; . e .

std: :shared_ptr<Types - const qualifier to denote immutable

data / functions,

- pointers where nullptr is to be
expected, otherwise use C++
references (&) .

26

Mpth and Legends

Chapter 3; Memory management

“C++ code is full of calls to new and delete”

“Programs written in C++ suffer from memory
leaks, double deallocation, and dangling pointers”

“Object oriented programming languages pretty much
require a garbage collector”

Garbage Collection

void aMethod() {
Complex c1 = new Complex(3.1, 1.0);
Complex c2 = new Complex(2.1, 0.5);
Complex c3 = cl.multiply(c2);

5 + al.size() items garbage!

Garbage collector responsible for

deallocating orphaned objects.

28

No Garbage Collection

C++

void aMethod() {
complex<double> cl1 {3.1, 1.0};
complex<double> c2 {2.1, 0.5};
auto c3 = cl*c2;

3 values on stack -> no garbage!
std: :vector<complex<double>> vec=CreateVector();

What about internal storage on heap?

“C++ is the best language for garbage collection
principally because it creates little garbage”

— Bjarne Stroustrup

29

Destructors

“Singapore Strategy”’ “Spoiled Child Strategy”
Clean up after yourself, littering is Drop uninteresting stuff and let Daddy
punished severely. clean up.
struct MyType { class MyType {
MyType(int s) public MyType(int s)
: pMem(new double[s]) {
{} mem = new double[s];
}
~MyType() {
delete [] pMem; double[] mem;
} }
private:

double* pMem;
}s

30

Destructors

“My favorite feature of C++is }” _ Herb Sutter
C++
void a_function() { void aMethod() {
MyType t{1}; MyType t = new MyType(1l);
/] .. /] ..

My Type::~MyType() gc will later mark mt dead, and free

called here! it for you

This is one of C++ most powerful
features!

31

RAI

C++

struct MyType {
MyType(int s)
: pMem(
std: :make_unique<double[]>(s)
)
{}

//~MyType() = default;
Compiler generated
deterministic clean up code.
Resource released here!

private:
std: :unique_ptr<double[]> pMem;

}s

Resource Acquisition
Is Initialization

32

Handling Non-Memory

Resources

C++

Works uniformly for all resources —
files, DB-connections, mutexs, ...

std::ifstream is{path};
std::getline(is, line);
} // file gets closed here

{

std: :lock_guard<std: :mutex>
synchronized{g mx};

/] ..
} // mutex g mx gets unlocked here

Manual handling — either:
* finally
* try-with-resource

If user “forgets” to do this,
{ ‘/////‘resourcesgetleaked.

try (
FileReader fr =
new FileReader(path)
) {
line = fr.readLine();
} // fr.close() will be called
// through AutoClosable

33

Resourcefulness is infectious!

* Every type that owns a resource becomes a
resource

e C++ makes our lives easier:

struct foobar {
std: :vector<double> vec;
std::ifstream is;

// compiler generated code for
// ~foobar()
// will invoke destructor of each member

Ik

What about Object Types!?

* Instances outlive scope they are created in
* Instances referenced by many other objects

* Containers (such as std: : vector) must store pointers
to instances due to polymorphism.

—>“Pointer graph”

Smart Pointers to the Rescue!

C++

using WidgetPtr = std::shared ptr<Widget>;
void Foo() {
std: :vector<WidgetPtr> widgets;

{
WidgetPtr button=std::make shared<Button>(“0K”);
RefCnt == |
_widgets.emplace back(button);
} copy ctor of shared_ptr increments RefCnt ==
) destructor of shared ptr decrements RefCnt ==
Draw(widgets);
}

destructor of shared ptr decrements RefCnt ==
Button is destroyed here!

36

Expressing Ownership

C++

struct MyObject {
// Does not increment RefCnt,
// i.e., MyObject does ,,not own® the parent object.
std: :weak ptr<MyObject> parent;

// FooBar instances are ,,shared® among instances

// of MyObject.

std::vector<std: :shared_ptr<FooBar>> vecfoobar;
private:

// Exclusively owned by MyObject. Will be
// destroyed by (compiler generated) ~MyObject().
std::unique_ptr<Implementation> m_pimpl;

}

37

Deterministic Smart Pointers
vs Garbage Collector

WeakReference<Shape> wr=new WeakReference<Shape>(
selectedObject.Shapes().Item(1);
); // similar to std::weak ptr in C++

selectedObject->MaintainShapes(); // may destroy shapes

Shape shape=wr.get();
S (elEmell=muill) What does that even mean

shape.DrawOutline(); in Java?
}

* Object lifetime is part of application logic, garbage collection is not.

* Destruction is more than just releasing resources:
Semantically, object no longer exists.

38

Mpth and Leqends
Chapter 3: Hemory management

“C++ code is full of calls to new(ant delete” No need to use new/delete

in C++ (except within ctors&dtors).
“Programs writc=n in C++ suffer from memory

leaks, double deallocatioriand dangling pointers”
Scopes and smart pointers give

“Object orienmad programming languages pretty much us deterministic object life time,
"suire a garbage collector” reducing the number of bugs.

Use destructors as canonical
mechanism for releasing memory
and non-memory ressources
immediately.

39

Mpth and Leqends

Chapter 4: Robustness

“C++ is haunted by undefined behavior”

“The (almost) completely prescribed behavior
of the Java language and utils reduces the number of
bugs in software”

Narrow vs.Wide Contracts

* (Narrow) preconditions * No preconditions
* Undefined/unspecified behavior if * Specified behavior for all inputs
preconditions do not hold = All inputs are valid!
void set date (void set date (
int yyyy, int mm, int dd int yyyy, int mm, int dd
) {) {
year = yyyy; if(!is_valid date(yyyy, mm, dd)){
month = mm; throw std::invalid_argument(
day = dd; “Invalid Date”
});
}
year = yyyy;
month = mm;
day = dd;

41

The Java Way

* Wide contracts force us to

* Define behavior that should never occur
e Document this behavior
* Test questionable code paths

* Wide contracts have costs
* More code (code size), more maintenance

* Make backward compatible extensions harder

* Java usually prefers wide contracts
* ArrayIndexOutOfBoundsException
* NullPointerException

Offensive Programming

Define a narrow path of correctness.
Don’t let programmers get away with broken code.

Only handle errors that may legitimately occur.
Assert that others do not happen.

Offensive Programming
- with Narrow Contracts

Narrow contract

* (Narrow) preconditions

* Undefined/unspecified behavior if
preconditions do not hold

void set date (int yyyy, int mm, int dd)

{
aEaT Asserting preconditions !=
is_valid_date(yyyy, mm, dd) widening contract
)s
year = yyyy;
month = mm;
day = dd;

44

If assertion fails

* Unit test: fail test case
* Debug: fail fast — crash & dump

* Release:
* Report/log
* Application: carry on
* Server: freeze process

* Disable asserts only where you have to (e.g,,
performance critical code)

Undefined Behavior
— Narrow Contracts All the Way Down

Gives better optimization opportunities

std::array<char, 1024> buffer; byte[] buffer = new byte[1024];
//fill uninitialized pattern(//Array.fill(buffer, 0);

// buffer.data()

/1);

read(buffer); source.read(buffer);

CHECKINITIALIZED(buffer);

* Optimal by default * Java has to fill the buffer with 0
* Enables detecting incorrect program ¢ 0 is no more correct than random
behavior values !!

46

Myth and Legends
Chapter 4: Robustness

Narrow contracts reduce code
complexity; asserting on pre-
conditions helps us to discover

“The /a1 =os¢) completely prescribed behavior bugs early,
of the Java languagc <nd utils reduces the number of bugs
in software”

“C++ is haunted by undefin.d behavior”

Attempting to be “robust” against
programming errors by assingning
“some” behavior is no better than
undefined behavior.

a7

~talk() {

Prefer narrow contracts over wide contracts
* Assert aggressively to detect errors early

Destructors and smart pointers make Garbage
Collection unnecessary

* Also works with resources other than memory

Use value semantics for regular types
* Improves code clarity & data locality

No cost abstractions
e Clean, understandable and efficient code

C++ @think-cell

> |M lines of C++ code

* Participation in the C++ Standards Committee
(sole sponsor of German delegation)

Berlin C++ user group

http://meetup.com/berlincplusplus
Sponsor of largest European C++ Conference
http://meetingcpp.com

Public range library (similar library will be part of future 1SO standard)
https://github.com/think-cell/range

http://meetup.com/berlincplusplus
http://meetingcpp.com/
https://github.com/think-cell/range

hr@think-cell.com

searching for C++ developers

think-cell
Chausseestralde 8/E
10115 Berlin
Germany

Tel +49-30-666473-10
Fax +49-30-666473-19

www.think-cell.com

think-cell "

http://www.think-cell.com/

Design Goals

C++

* Efficiency * simple, familiar
* don’t pay for what you don’t use object-oriented
* noroom for a lower-level language « robuyst, secure

below C++ (except assembler) * architecture-neutral, portable
* Support for user-defined types as for , high performance
built-in types. . e threaded
* Allow features beats prevent misuse .

- interpreted, dynamic
* Don’t force usage of specific

programming style

The C++ Programming Language Java: an Overview

4th ed James Gosling, 1995
Bjarne Stroustrup, 2013 http://www.stroustrup.com/1995 Java whitepaper.pdf

51

http://www.stroustrup.com/1995_Java_whitepaper.pdf

Emulating Value Semantics in Java

Object a = borrow_object(); Object a = borrow object();
Object b = a; Object b = a;

b = modified value (b) ;

assert a != b; // modify object (b);

assert !isModified(a)

static Object

modified value (Object o) {
Object mo = o.clone();
modify object (mo) ;
return mo;

Type must not implement

mutating methods, so this
does not compile!

52

Of Stacks and Heaps

{

* local variables only it a
int b;
* very fast access {
int c;
* data locality int d;
.)
* no fragmentation i

* variables are de-
allocated automatically

+ FIFO

53

Of Stacks and Heaps

Stack Heap

* global variable access

* fast access
* | indirection per variable

var
* possible fragmentation H\

e variables need to be
managed

54

Garbage Collection

I

v’automatic v'automatic
v'deterministic v'incremental dealloc
v'extends to all resources v optimization opportunity
v'local through deferred deallocation
v'no memory overhead v'heap compacting

v'fast alloc (pointer bump)
x “avalanching destructors” % non-deterministic

¥ handles memory only
¥ memory overhead
x stop the thread/the world

55

Garbage Collection -
Performance

* Garbage collectors perform well
* as long as they have enough memory
* enough = 2-3x working set size
* recent studies claim |.5-2x working set size

% Performance declines rapidly if memory is scarce
* degradation 10x and more

x GC pause “the world” for short intervals
* can lead to bad perceived performance

v'Some disadvantages of Reference Semantics can be
(partially) offset by garbage collection

* Nursery collection offsets overuse of Heap alloc
* Heap compacting offsets indirection overhead

%

	Slide 1: C++ vs. Java
	Slide 2
	Slide 3: C++ vs. Java
	Slide 4: Our objective
	Slide 5: Myth and Legends Chapter 1: Expressiveness
	Slide 6
	Slide 7: Modern C++ (think-cell Style)
	Slide 8: Modern C++ (think-cell Style)
	Slide 9: No-Overhead Data Structures
	Slide 10: Memory Layout
	Slide 11: Memory Layout
	Slide 12: No-Overhead Data Structures
	Slide 13: No-Cost Abstraction
	Slide 14: No-Cost Abstraction
	Slide 15: No-Cost Abstraction
	Slide 16: Beauty in Abstraction
	Slide 17: Myth and Legends Chapter 1: Expressiveness
	Slide 18: Myth and Legends Chapter 2: Variables and Parameters
	Slide 19
	Slide 20: Value vs. Reference Semantics
	Slide 21: Two Important Categories of Data Types
	Slide 22: Are all user defined types (UDTs) always object-like?
	Slide 23: Value-like UDTs
	Slide 24: Reference Semantics
	Slide 25: Reference Semantics
	Slide 26: Myth and Legends Chapter 2: Variables and Parameters
	Slide 27: Myth and Legends Chapter 3: Memory management
	Slide 28: Garbage Collection
	Slide 29: No Garbage Collection
	Slide 30: Destructors
	Slide 31: Destructors
	Slide 32: RAII
	Slide 33: Handling Non-Memory Resources
	Slide 34: Resourcefulness is infectious!
	Slide 35: What about Object Types?
	Slide 36: Smart Pointers to the Rescue!
	Slide 37: Expressing Ownership
	Slide 38: Deterministic Smart Pointers vs Garbage Collector
	Slide 39: Myth and Legends Chapter 3: Memory management
	Slide 40: Myth and Legends Chapter 4: Robustness
	Slide 41: Narrow vs. Wide Contracts
	Slide 42: The Java Way
	Slide 43: Offensive Programming
	Slide 44: Offensive Programming - with Narrow Contracts
	Slide 45: If assertion fails
	Slide 46: Undefined Behavior – Narrow Contracts All the Way Down
	Slide 47: Myth and Legends Chapter 4: Robustness
	Slide 48: ~talk() {
	Slide 49: C++ @think-cell
	Slide 50: hr@think-cell.com searching for C++ developers
	Slide 51: Design Goals
	Slide 52: Emulating Value Semantics in Java
	Slide 53: Of Stacks and Heaps
	Slide 54: Of Stacks and Heaps
	Slide 55: Garbage Collection
	Slide 56: Garbage Collection - Performance
	Slide 57

