

What are objects and lifetime?

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 1

Objects are fundamental to C++

[intro.object]/1
The constructs in a C++ program create, destroy, refer to, access, andmanipulate objects.

Key terms:

1 Storage

2 Value

3 Type

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 2

Objects are fundamental to C++

[intro.object]/1
The constructs in a C++ program create, destroy, refer to, access, andmanipulate objects.

Key terms:

1 Storage

2 Value

3 Type

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 2

Objects are fundamental to C++

[intro.object]/1
The constructs in a C++ program create, destroy, refer to, access, andmanipulate objects.

Key terms:

1 Storage

2 Value

3 Type

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 2

Objects are fundamental to C++

[intro.object]/1
The constructs in a C++ program create, destroy, refer to, access, andmanipulate objects.

Key terms:

1 Storage

2 Value

3 Type

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 2

1. Storage

Definition
[intro.memory]/1

The fundamental storage unit in the C++ memory model is the byte. […] The memory
available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

10A66C820FC8FAB97C7B6E5EB6

F86E119FBC2E41D2FAB5E02791

A76594332D72E1E4574DAD97E7

A89922A7FF860B6C15526C9377

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 3

1. Storage

Definition
[intro.memory]/1

The fundamental storage unit in the C++ memory model is the byte. […] The memory
available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

E13DD335AAB3A72B4D567F55EE

D13D526D114941D994FE95DE9F

C4C2F3EFFD9E7B78C6DD9E2BE0

1187117E9E900F769944E99AAD

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 3

2. Value

What does 0x41 mean?

8-bit integer 65
character 'A'
start of string "A…"
part of a 32-bit integer
…

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 4

2. Value

What does 0x41 mean?

8-bit integer 65

character 'A'
start of string "A…"
part of a 32-bit integer
…

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 4

2. Value

What does 0x41 mean?

8-bit integer 65
character 'A'

start of string "A…"
part of a 32-bit integer
…

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 4

2. Value

What does 0x41 mean?

8-bit integer 65
character 'A'
start of string "A…"

part of a 32-bit integer
…

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 4

2. Value

What does 0x41 mean?

8-bit integer 65
character 'A'
start of string "A…"
part of a 32-bit integer

…

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 4

2. Value

What does 0x41 mean?

8-bit integer 65
character 'A'
start of string "A…"
part of a 32-bit integer
…

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 4

2. Value

Definition
Elements of Programming

A datum is a finite sequence of 0s and 1s. […] We refer to a datum together with its
interpretation as a value.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 5

3. Type

Definition
A type describes the interpretation of a datum.

unsigned char 1 byte of memory interpreted as an 8-bit unsigned integer.

int 4 bytes of memory interpreted as a 32-bit two’s complement integer.

std::string 24 bytes of memory interpreted as pointer to a null-terminated sequence of char,
size, and capacity.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 6

3. Type

Definition
A type describes the interpretation of a datum.

unsigned char 1 byte of memory interpreted as an 8-bit unsigned integer.

int 4 bytes of memory interpreted as a 32-bit two’s complement integer.

std::string 24 bytes of memory interpreted as pointer to a null-terminated sequence of char,
size, and capacity.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 6

3. Type

Definition
A type describes the interpretation of a datum.

unsigned char 1 byte of memory interpreted as an 8-bit unsigned integer.

int 4 bytes of memory interpreted as a 32-bit two’s complement integer.

std::string 24 bytes of memory interpreted as pointer to a null-terminated sequence of char,
size, and capacity.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 6

3. Type

Definition
A type describes the interpretation of a datum.

unsigned char 1 byte of memory interpreted as an 8-bit unsigned integer.

int 4 bytes of memory interpreted as a 32-bit two’s complement integer.

std::string 24 bytes of memory interpreted as pointer to a null-terminated sequence of char,
size, and capacity.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 6

What are objects?

Definition
An object has a particular type and occupies a region of storage at a particular address where its
value is stored.

int x = 42; // object of type int, storing the value 42
float y = 3.14f; // object of type float, storing the value 3.14
x = 11; // change the value of object x

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 7

What aren’t objects?

Functions aren’t objects; only function pointers
void f() {} // not an object

void (*pf)() = f; // object whose value is the address of f

References aren’t objects; they are aliases to objects
int x = 11; // object
int& ref = x; // alias for the object above

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 8

What aren’t objects?

Functions aren’t objects; only function pointers
void f() {} // not an object

void (*pf)() = f; // object whose value is the address of f

References aren’t objects; they are aliases to objects
int x = 11; // object
int& ref = x; // alias for the object above

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 8

What is lifetime?

Definition
[basic.life]/1

The lifetime of an object […] is a runtime property of the object […].

[basic.life]/4
The properties ascribed to objects […] throughout this document apply for a given object
[…] only during its lifetime.

[basic.life]/Note 2
In particular, before the lifetime of an object starts and after its lifetime ends there are
significant restrictions on the use of the object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 9

What is lifetime?

Definition
[basic.life]/1

The lifetime of an object […] is a runtime property of the object […].

[basic.life]/4
The properties ascribed to objects […] throughout this document apply for a given object
[…] only during its lifetime.

[basic.life]/Note 2
In particular, before the lifetime of an object starts and after its lifetime ends there are
significant restrictions on the use of the object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 9

What is lifetime?

Definition
[basic.life]/1

The lifetime of an object […] is a runtime property of the object […].

[basic.life]/4
The properties ascribed to objects […] throughout this document apply for a given object
[…] only during its lifetime.

[basic.life]/Note 2
In particular, before the lifetime of an object starts and after its lifetime ends there are
significant restrictions on the use of the object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 9

Object lifetime in a nutshell

1 Storage is allocated.

2 An object is “initialized”; the lifetime starts.
3 An object is used; its value changed or read.
4 An object is destroyed; the lifetime ends.
5 Storage is deallocated.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 10

Object lifetime in a nutshell

1 Storage is allocated.
2 An object is “initialized”; the lifetime starts.

3 An object is used; its value changed or read.
4 An object is destroyed; the lifetime ends.
5 Storage is deallocated.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 10

Object lifetime in a nutshell

1 Storage is allocated.
2 An object is “initialized”; the lifetime starts.
3 An object is used; its value changed or read.

4 An object is destroyed; the lifetime ends.
5 Storage is deallocated.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 10

Object lifetime in a nutshell

1 Storage is allocated.
2 An object is “initialized”; the lifetime starts.
3 An object is used; its value changed or read.
4 An object is destroyed; the lifetime ends.

5 Storage is deallocated.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 10

Object lifetime in a nutshell

1 Storage is allocated.
2 An object is “initialized”; the lifetime starts.
3 An object is used; its value changed or read.
4 An object is destroyed; the lifetime ends.
5 Storage is deallocated.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 10

Note about terminology

Objects can be created: This does not necessarily start the lifetime yet.

Objects can be destroyed: This ends the lifetime.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 11

Note about terminology

Objects can be created: This does not necessarily start the lifetime yet.

Objects can be destroyed: This ends the lifetime.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 11

Note about terminology

Lifetime is something the standard invented to describe
semantics on the abstract machine.

It has nothing to do with the physical machine your code actually executes on.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 12

Level 0: Variable declaration

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 13

Level 0: Variable declaration

Object creation
[intro.object]/1

An object is created by a definition […].

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 14

Level 0: Variable declaration

Object creation
[intro.object]/1

An object is created by a definition […].

int main() {
int x = 11; // create the object, allocate storage + start lifetime

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 14

Level 0: Variable declaration

Object creation
[intro.object]/1

An object is created by a definition […].

int main() {
int x = 11; // create the object, allocate storage + start lifetime
std::print("x = {}\n", x); // use the object
++x; // use the object
std::print("x = {}\n", x); // use the object

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 14

Level 0: Variable declaration

Object creation
[intro.object]/1

An object is created by a definition […].

int main() {
int x = 11; // create the object, allocate storage + start lifetime
std::print("x = {}\n", x); // use the object
++x; // use the object
std::print("x = {}\n", x); // use the object

} // destroy the object, end lifetime + deallocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 14

Storage duration

Definition
[basic.stc.general]/1

The storage duration is the property of an object that defines the minimum potential
lifetime of the storage containing the object. The storage duration is determined by the
construct used to create the object.

[basic.stc.general]/2
Static, thread, and automatic storage durations are associated with objects introduced
by declarations.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 15

Storage duration

Definition
[basic.stc.general]/1

The storage duration is the property of an object that defines the minimum potential
lifetime of the storage containing the object. The storage duration is determined by the
construct used to create the object.

[basic.stc.general]/2
Static, thread, and automatic storage durations are associated with objects introduced
by declarations.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 15

Automatic storage duration

Definition
[basic.stc.auto]/1

Variables that belong to a block or parameter scope and are not explicitly declared
static, thread_local, or extern have automatic storage duration. The storage for
these entities lasts until the block in which they are created exits.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 16

Automatic storage duration

Definition
[basic.stc.auto]/1

Variables that belong to a block or parameter scope and are not explicitly declared
static, thread_local, or extern have automatic storage duration. The storage for
these entities lasts until the block in which they are created exits.

int main() {
int a; // allocation of a
int b; // allocation of b

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 16

Automatic storage duration

Definition
[basic.stc.auto]/1

Variables that belong to a block or parameter scope and are not explicitly declared
static, thread_local, or extern have automatic storage duration. The storage for
these entities lasts until the block in which they are created exits.

int main() {
int a; // allocation of a
int b; // allocation of b
{

int c; // allocation of c

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 16

Automatic storage duration

Definition
[basic.stc.auto]/1

Variables that belong to a block or parameter scope and are not explicitly declared
static, thread_local, or extern have automatic storage duration. The storage for
these entities lasts until the block in which they are created exits.

int main() {
int a; // allocation of a
int b; // allocation of b
{

int c; // allocation of c
} // deallocation of c

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 16

Automatic storage duration

Definition
[basic.stc.auto]/1

Variables that belong to a block or parameter scope and are not explicitly declared
static, thread_local, or extern have automatic storage duration. The storage for
these entities lasts until the block in which they are created exits.

int main() {
int a; // allocation of a
int b; // allocation of b
{

int c; // allocation of c
} // deallocation of c

} // deallocation of a and b

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 16

Static storage duration

Definition
[basic.stc.static]/1

All variables which do not have thread storage duration and belong to a namespace
scope or are first declared with the static or extern keywords have static storage
duration. The storage for these entities lasts for the duration of the program.

int global; // static storage
static int static_global; // static storage

void f() {
static int function_local_static; // static storage
extern int extern_global; // static storage

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 17

Static storage duration

Definition
[basic.stc.static]/1

All variables which do not have thread storage duration and belong to a namespace
scope or are first declared with the static or extern keywords have static storage
duration. The storage for these entities lasts for the duration of the program.

int global; // static storage
static int static_global; // static storage

void f() {
static int function_local_static; // static storage
extern int extern_global; // static storage

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 17

Thread storage duration

Definition
[basic.stc.thread]/1

All variables declared with the thread_local keyword have thread storage duration.
The storage for these entities lasts for the duration of the thread in which they are created.
There is a distinct object or reference per thread, and use of the declared name refers to
the entity associated with the current thread.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 18

Thread storage duration

Definition
[basic.stc.thread]/1

All variables declared with the thread_local keyword have thread storage duration.
The storage for these entities lasts for the duration of the thread in which they are created.
There is a distinct object or reference per thread, and use of the declared name refers to
the entity associated with the current thread.

thread_local int thread_local_variable; // thread storage

int main() { // at this point, one copy of thread_local_variable exists

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 18

Thread storage duration

Definition
[basic.stc.thread]/1

All variables declared with the thread_local keyword have thread storage duration.
The storage for these entities lasts for the duration of the thread in which they are created.
There is a distinct object or reference per thread, and use of the declared name refers to
the entity associated with the current thread.

thread_local int thread_local_variable; // thread storage

int main() { // at this point, one copy of thread_local_variable exists
std::thread thr(…); // allocate another copy

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 18

Thread storage duration

Definition
[basic.stc.thread]/1

All variables declared with the thread_local keyword have thread storage duration.
The storage for these entities lasts for the duration of the thread in which they are created.
There is a distinct object or reference per thread, and use of the declared name refers to
the entity associated with the current thread.

thread_local int thread_local_variable; // thread storage

int main() { // at this point, one copy of thread_local_variable exists
std::thread thr(…); // allocate another copy

} // deallocate the copy

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 18

Storage duration vs. lifetime

In general, the storage duration is not the same as the
lifetime of an object!

[basic.life]/1
The lifetime of an object of type T begins when:

storage with the proper alignment and size for type T is obtained, and
its initialization (if any) is complete

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 19

Storage duration vs. lifetime

In general, the storage duration is not the same as the
lifetime of an object!

[basic.life]/1
The lifetime of an object of type T begins when:

storage with the proper alignment and size for type T is obtained, and
its initialization (if any) is complete

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 19

Storage duration vs. lifetime

Automatic storage duration: storage duration and lifetime match1.

Static and thread storage duration: it’s complicated

function-local static vs global scope
constinit vs. dynamic initialization
nifty counters, module dependency graph, inline variables

www.jonathanmueller.dev/talk/static-initialization-order-fiasco/

1Terms and conditions may apply.
Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 20

https://www.jonathanmueller.dev/talk/static-initialization-order-fiasco/

Storage duration vs. lifetime

Automatic storage duration: storage duration and lifetime match1.

Static and thread storage duration: it’s complicated

function-local static vs global scope
constinit vs. dynamic initialization
nifty counters, module dependency graph, inline variables

www.jonathanmueller.dev/talk/static-initialization-order-fiasco/

1Terms and conditions may apply.
Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 20

https://www.jonathanmueller.dev/talk/static-initialization-order-fiasco/

Object lifetime and initial value

In general, an object can have its lifetime start without a
known value!

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 21

Object lifetime and initial value

Definition
[basic.indet]/1-2

When storage for an object with automatic or dynamic storage duration is obtained, the
object has an indeterminate value, and if no initialization is performed for the object,
that object retains an indeterminate value until that value is replaced. If an indeterminate
value is produced by an evaluation, the behavior is undefined.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 22

Object lifetime and initial value

Definition
[basic.indet]/1-2

When storage for an object with automatic or dynamic storage duration is obtained, the
object has an indeterminate value, and if no initialization is performed for the object,
that object retains an indeterminate value until that value is replaced. If an indeterminate
value is produced by an evaluation, the behavior is undefined.

int main() {
int x; // start the lifetime with indeterminate value

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 22

Object lifetime and initial value

Definition
[basic.indet]/1-2

When storage for an object with automatic or dynamic storage duration is obtained, the
object has an indeterminate value, and if no initialization is performed for the object,
that object retains an indeterminate value until that value is replaced. If an indeterminate
value is produced by an evaluation, the behavior is undefined.

int main() {
int x; // start the lifetime with indeterminate value
std::print("x = {}\n", x); // UB

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 22

Object lifetime and initial value

Definition
[basic.indet]/1-2

When storage for an object with automatic or dynamic storage duration is obtained, the
object has an indeterminate value, and if no initialization is performed for the object,
that object retains an indeterminate value until that value is replaced. If an indeterminate
value is produced by an evaluation, the behavior is undefined.

int main() {
int x; // start the lifetime with indeterminate value
std::print("x = {}\n", x); // UB
x = 11;
std::print("x = {}\n", x); // okay

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 22

Erroneous behavior

In C++26: read of indeterminate value is erroneous, not undefined.

P2795
If the execution contains an operation specified as having erroneous behavior, the imple-
mentation is permitted to issue a diagnostic and is permitted to terminate the execution
at an unspecified time after that operation.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 23

Level 1: new and delete

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 24

Level 1: new and delete

Object creation
[intro.object]/1

An object is created […] by a new-expression.

[expr.delete]/1
The delete-expression operator destroys a most derived object or array created by a
new-expression.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 25

Level 1: new and delete

Object creation
[intro.object]/1

An object is created […] by a new-expression.

[expr.delete]/1
The delete-expression operator destroys a most derived object or array created by a
new-expression.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 25

Level 1: new and delete

Object creation
[intro.object]/1

An object is created […] by a new-expression.

[expr.delete]/1
The delete-expression operator destroys a most derived object or array created by a
new-expression.

int main() {
int* ptr = new int(11); // create the object and start the lifetime

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 25

Level 1: new and delete

Object creation
[intro.object]/1

An object is created […] by a new-expression.

[expr.delete]/1
The delete-expression operator destroys a most derived object or array created by a
new-expression.

int main() {
int* ptr = new int(11); // create the object and start the lifetime
std::print("*ptr = {}\n", *ptr); // use the object
++*ptr; // use the object
std::print("*ptr = {}\n", *ptr); // use the object

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 25

Level 1: new and delete

Object creation
[intro.object]/1

An object is created […] by a new-expression.

[expr.delete]/1
The delete-expression operator destroys a most derived object or array created by a
new-expression.

int main() {
int* ptr = new int(11); // create the object and start the lifetime
std::print("*ptr = {}\n", *ptr); // use the object
++*ptr; // use the object
std::print("*ptr = {}\n", *ptr); // use the object
delete ptr; // destroy the object and end the lifetime

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 25

Level 1: new and delete

Also possible to create one with indeterminate value:

int main() {
int* ptr = new int; // start the lifetime with indeterminate value

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 26

Level 1: new and delete

Also possible to create one with indeterminate value:

int main() {
int* ptr = new int; // start the lifetime with indeterminate value
std::print("*ptr = {}\n", *ptr); // UB

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 26

Level 1: new and delete

Also possible to create one with indeterminate value:

int main() {
int* ptr = new int; // start the lifetime with indeterminate value
std::print("*ptr = {}\n", *ptr); // UB
*ptr = 11;
std::print("*ptr = {}\n", *ptr); // okay

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 26

Level 2: Temporary objects

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 27

Level 2: Temporary objects

Object creation
[intro.object]/1

An object is created […] when a temporary object is created.

void f(const int& ref);

int main() {
f(42); // creation of temporary object

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 28

Level 2: Temporary objects

Object creation
[intro.object]/1

An object is created […] when a temporary object is created.

void f(const int& ref);

int main() {
f(42); // creation of temporary object

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 28

Temporary materialization conversion

Definition
[conv.rval]/1

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a
temporary object of type T from the prvalue by evaluating the prvalue with the temporary
object as its result object, and produces an xvalue denoting the temporary object.

Whenever a prvalue is used in a context where an xvalue is expected, a temporary object is created:

binding a reference to a prvalue
member-access on a prvalue
using an array prvalue
discarding the result of a function call that returns a prvalue

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 29

Temporary materialization conversion

Definition
[conv.rval]/1

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a
temporary object of type T from the prvalue by evaluating the prvalue with the temporary
object as its result object, and produces an xvalue denoting the temporary object.

Whenever a prvalue is used in a context where an xvalue is expected, a temporary object is created:

binding a reference to a prvalue

member-access on a prvalue
using an array prvalue
discarding the result of a function call that returns a prvalue

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 29

Temporary materialization conversion

Definition
[conv.rval]/1

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a
temporary object of type T from the prvalue by evaluating the prvalue with the temporary
object as its result object, and produces an xvalue denoting the temporary object.

Whenever a prvalue is used in a context where an xvalue is expected, a temporary object is created:

binding a reference to a prvalue
member-access on a prvalue

using an array prvalue
discarding the result of a function call that returns a prvalue

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 29

Temporary materialization conversion

Definition
[conv.rval]/1

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a
temporary object of type T from the prvalue by evaluating the prvalue with the temporary
object as its result object, and produces an xvalue denoting the temporary object.

Whenever a prvalue is used in a context where an xvalue is expected, a temporary object is created:

binding a reference to a prvalue
member-access on a prvalue
using an array prvalue

discarding the result of a function call that returns a prvalue

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 29

Temporary materialization conversion

Definition
[conv.rval]/1

A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a
temporary object of type T from the prvalue by evaluating the prvalue with the temporary
object as its result object, and produces an xvalue denoting the temporary object.

Whenever a prvalue is used in a context where an xvalue is expected, a temporary object is created:

binding a reference to a prvalue
member-access on a prvalue
using an array prvalue
discarding the result of a function call that returns a prvalue

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 29

Lifetime of a temporary

When a temporary is created, its lifetime starts.

Object destruction
[class.temporary]/4

Temporary objects are destroyed as the last step in evaluating the full-expression that
(lexically) contains the point where they were created.

void f(auto&& ... args);

int g();

int main() {
f(11, g()); // two temporary objects are created
// ^ temporaries destroyed here

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 30

Lifetime of a temporary

When a temporary is created, its lifetime starts.

Object destruction
[class.temporary]/4

Temporary objects are destroyed as the last step in evaluating the full-expression that
(lexically) contains the point where they were created.

void f(auto&& ... args);

int g();

int main() {
f(11, g()); // two temporary objects are created
// ^ temporaries destroyed here

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 30

Temporary lifetime extension

1 When a reference is bound to a temporary, the lifetime of the temporary is extended to the
lifetime of the reference.

int main() {
const int& ref = 42; // temporary created here
std::print("ref = {}\n", ref);

} // temporary destroyed here when ref is destroyed

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 31

Temporary lifetime extension

Careful: It has to be a reference that directly binds to a temporary.
std::vector<std::string> get_strings();

int main() {
const auto& strings = get_strings(); // extended
const auto& string = get_strings()[0]; // not extended

}

template <typename T>
T& std::vector<T>::operator[](std::size_t idx);

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 32

Temporary lifetime extension

Careful: It has to be a reference that directly binds to a temporary.
std::vector<std::string> get_strings();

int main() {
const auto& strings = get_strings(); // extended
const auto& string = get_strings()[0]; // not extended

}

template <typename T>
T& std::vector<T>::operator[](std::size_t idx);

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 32

Temporary lifetime extension

2 All temporaries created within the range expression of for are destroyed after the loop.

std::vector<std::string> get_strings();

int main() {
for (auto&& str : get_strings()) {

std::print("{}\n", str);
} // temporary destroyed here

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 33

Temporary lifetime extension

2 All temporaries created within the range expression of for are destroyed after the loop.

std::vector<std::string> get_strings();

int main() {
for (auto&& str : get_strings()) {

std::print("{}\n", str);
} // temporary destroyed here

for (auto&& c : get_strings()[0]) {
std::print("{}\n", c);

} // also okay, temporary destroyed here
}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 33

Level 3: Placement new

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 34

Level 3: Placement new

Object creation
[intro.object]/1

An object is created […] by a new-expression.

Placement new: explicit constructor call.
void* memory = …;
int* ptr = ::new(memory) int(11); // create an object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 35

Level 3: Placement new

Object creation
[intro.object]/1

An object is created […] by a new-expression.

Placement new: explicit constructor call.
void* memory = …;
int* ptr = ::new(memory) int(11); // create an object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 35

Manually create an object

Placement new

::new(static_cast<void*>(ptr)) T(…);

Placement new can be overloaded!

namespace std {
template <typename T, typename ... Args>
constexpr T* construct_at(T* ptr, Args&&... args) {

return ::new(static_cast<void*>(ptr)) T(std::forward<Args>(args)...);
}

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 36

Manually create an object

Placement new

::new(static_cast<void*>(ptr)) T(…);

Placement new can be overloaded!

namespace std {
template <typename T, typename ... Args>
constexpr T* construct_at(T* ptr, Args&&... args) {

return ::new(static_cast<void*>(ptr)) T(std::forward<Args>(args)...);
}

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 36

Manually destroy an object

Explicit destructor call

x.~T();

syntax does not allow builtin types
syntax does not allow namespace qualifiers

namespace std {
template <typename T>
void destroy_at(T* ptr) {

ptr->~T();
}

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 37

Manually destroy an object

Explicit destructor call

x.~T();

syntax does not allow builtin types
syntax does not allow namespace qualifiers

namespace std {
template <typename T>
void destroy_at(T* ptr) {

ptr->~T();
}

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 37

How to allocate memory without creating objects?

1 std::malloc

void* memory = std::malloc(sizeof(int)); // allocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 38

How to allocate memory without creating objects?

1 std::malloc

void* memory = std::malloc(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 38

How to allocate memory without creating objects?

1 std::malloc

void* memory = std::malloc(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 38

How to allocate memory without creating objects?

1 std::malloc

void* memory = std::malloc(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object
std::destroy_at(ptr); // end lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 38

How to allocate memory without creating objects?

1 std::malloc

void* memory = std::malloc(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object
std::destroy_at(ptr); // end lifetime
std::free(memory); // deallocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 38

How to allocate memory without creating objects?

2 ::operator new

void* memory = ::operator new(sizeof(int)); // allocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 39

How to allocate memory without creating objects?

2 ::operator new

void* memory = ::operator new(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 39

How to allocate memory without creating objects?

2 ::operator new

void* memory = ::operator new(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 39

How to allocate memory without creating objects?

2 ::operator new

void* memory = ::operator new(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object
std::destroy_at(ptr); // end lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 39

How to allocate memory without creating objects?

2 ::operator new

void* memory = ::operator new(sizeof(int)); // allocate storage
int* ptr = ::new(memory) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object
std::destroy_at(ptr); // end lifetime
::operator delete(memory); // deallocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 39

How to allocate memory without creating objects?

3 Array of unsigned char or std::byte

int main() {
alignas(int) unsigned char buffer[sizeof(int)]; // allocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 40

How to allocate memory without creating objects?

3 Array of unsigned char or std::byte

int main() {
alignas(int) unsigned char buffer[sizeof(int)]; // allocate storage
int* ptr = ::new(static_cast<void*>(buffer)) int(11); // start lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 40

How to allocate memory without creating objects?

3 Array of unsigned char or std::byte

int main() {
alignas(int) unsigned char buffer[sizeof(int)]; // allocate storage
int* ptr = ::new(static_cast<void*>(buffer)) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 40

How to allocate memory without creating objects?

3 Array of unsigned char or std::byte

int main() {
alignas(int) unsigned char buffer[sizeof(int)]; // allocate storage
int* ptr = ::new(static_cast<void*>(buffer)) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object
std::destroy_at(ptr); // end lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 40

How to allocate memory without creating objects?

3 Array of unsigned char or std::byte

int main() {
alignas(int) unsigned char buffer[sizeof(int)]; // allocate storage
int* ptr = ::new(static_cast<void*>(buffer)) int(11); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object
std::destroy_at(ptr); // end lifetime

} // deallocate storage

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 40

How to allocate memory without creating objects?

4 Re-use memory of an existing object

int main() {
int x = 11; // create an object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 41

How to allocate memory without creating objects?

4 Re-use memory of an existing object

int main() {
int x = 11; // create an object
std::destroy_at(&x); // end lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 41

How to allocate memory without creating objects?

4 Re-use memory of an existing object

int main() {
int x = 11; // create an object
std::destroy_at(&x); // end lifetime
int* ptr = ::new(static_cast<void*>(&x)) int(42); // start lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 41

How to allocate memory without creating objects?

4 Re-use memory of an existing object

int main() {
int x = 11; // create an object
std::destroy_at(&x); // end lifetime
int* ptr = ::new(static_cast<void*>(&x)) int(42); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 41

How to allocate memory without creating objects?

4 Re-use memory of an existing object

int main() {
int x = 11; // create an object
std::destroy_at(&x); // end lifetime
int* ptr = ::new(static_cast<void*>(&x)) int(42); // start lifetime
std::print("*ptr = {}\n", *ptr); // use the object

} // end lifetime

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 41

Be careful when re-using memory

const is const

(mostly)

[basic.life]/10
Creating a new objectwithin the storage that a const, complete object with static, thread,
or automatic storage duration occupies, or within the storage that such a const object
used to occupy before its lifetime ended, results in undefined behavior.

int main() {
const int x = 11;
std::destroy_at(&x); // end lifetime
::new(static_cast<void*>(&x)) int(42); // UB

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 42

Be careful when re-using memory

const is const (mostly)
[basic.life]/10

Creating a new objectwithin the storage that a const, complete object with static, thread,
or automatic storage duration occupies, or within the storage that such a const object
used to occupy before its lifetime ended, results in undefined behavior.

int main() {
const int* ptr = new const int(11);
std::destroy_at(ptr); // end lifetime
::new(static_cast<void*>(ptr)) int(42); // okay

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 42

Be careful when re-using memory

The destructor still runs
[basic.life]/9

If a program ends the lifetime of an object of type T with static, thread, or automatic
storage duration and if T has a non-trivial destructor, and another object of the original
type does not occupy that same storage location when the implicit destructor call takes
place, the behavior of the program is undefined.

int main() {
std::string str = "non-trivial destructor";
std::destroy_at(&str); // end lifetime

} // end lifetime again...

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 43

Be careful when re-using memory

int main() {
int x = 11;
std::destroy_at(&x);
int* ptr = ::new(static_cast<void*>(&x)) int(42);
std::print("*ptr = {}\n", *ptr); // okay

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 44

Be careful when re-using memory

int main() {
int x = 11;
std::destroy_at(&x);
int* ptr = ::new(static_cast<void*>(&x)) int(42);
std::print("*ptr = {}\n", *ptr); // okay
std::print("x = {}\n", x); // also okay?

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 44

Transparent replacement of objects

Definition
[basic.life]/8

If, after the lifetime of an object has ended and before the storage which the object
occupied is reused or released, a new object is created at the storage location which
the original object occupied, a pointer that pointed to the original object, a reference
that referred to the original object, or the name of the original objectwill automatically
refer to the new object and, once the lifetime of the new object has started, can be used
to manipulate the new object, if the original object is transparently replaceable by the
new object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 45

Transparent replacement of objects

Definition
a is transparently replacable by b if:

a and b use the same storage, and
a and b have the same type (ignoring top-level cv-qualifiers)

However, you cannot transparently replace:
const objects
base classes
[[no_unique_address]] members

When replacing subobjects (member variables or array elements), the rules apply recursively to the
parent object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 46

Transparent replacement of objects

Definition
a is transparently replacable by b if:

a and b use the same storage, and
a and b have the same type (ignoring top-level cv-qualifiers)

However, you cannot transparently replace:
const objects
base classes
[[no_unique_address]] members

When replacing subobjects (member variables or array elements), the rules apply recursively to the
parent object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 46

Transparent replacement of objects

Definition
a is transparently replacable by b if:

a and b use the same storage, and
a and b have the same type (ignoring top-level cv-qualifiers)

However, you cannot transparently replace:
const objects
base classes
[[no_unique_address]] members

When replacing subobjects (member variables or array elements), the rules apply recursively to the
parent object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 46

Transparent replacement of objects

int main() {
int x = 11;
std::destroy_at(&x);
::new(static_cast<void*>(&x)) int(42); // transparent replacement
std::print("x = {}\n", x); // okay

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 47

Transparent replacement of objects

foo& foo::operator=(const foo& other) {
std::destroy_at(this);
::new(static_cast<void*>(this)) foo(other); // transparent replacement
return *this; // okay

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 47

Transparent replacement of objects

struct foo {
int x;

void f() {
std::destroy_at(&x);
::new(static_cast<void*>(&x)) int(42); // transparent replacement

}
};

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 47

Non-transparent replacement of objects

const int* ptr = new const int(11);
std::destroy_at(ptr);
int* new_ptr = ::new(static_cast<void*>(ptr)) const int(42); // non-transparent
std::print("*new_ptr = {}\n", *new_ptr); // okay
std::print("*ptr = {}\n", *ptr); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 48

std::launder to the rescue

namespace std {
template <typename T>
T* launder(T* ptr) noexcept; // magic identity function

}

const int* ptr = new const int(11);
std::destroy_at(ptr);
auto new_ptr = ::new(static_cast<void*>(ptr)) int(42); // non-transparent
std::print("*new_ptr = {}\n", *new_ptr); // okay
std::print("*ptr = {}\n", *std::launder(ptr)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 49

std::launder to the rescue

namespace std {
template <typename T>
T* launder(T* ptr) noexcept; // magic identity function

}

const int* ptr = new const int(11);
std::destroy_at(ptr);
auto new_ptr = ::new(static_cast<void*>(ptr)) int(42); // non-transparent
std::print("*new_ptr = {}\n", *new_ptr); // okay
std::print("*ptr = {}\n", *std::launder(ptr)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 49

std::launder even helps with references

const int* ptr = new const int(11);
const int& ref = *ptr;
std::destroy_at(ptr);
::new(static_cast<void*>(ptr)) int(42); // non-transparent
std::print("ref = {}\n", ref); // UB
std::print("ref = {}\n", *std::launder(&ref)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 50

std::launder does not prevent UB

static_assert(
sizeof(float) == sizeof(int) && alignof(float) == alignof(int)

);

int main() {
float* f_ptr = new float(3.14f);
std::destroy_at(f_ptr);
int* i_ptr = ::new(static_cast<void*>(f_ptr)) int(42); // non-transparent
std::print("*i_ptr = {}\n", *i_ptr); // okay
std::print("*f_ptr = {}\n", *f_ptr); // UB
std::print("*f_ptr = {}\n", *std::launder(f_ptr)); // still UB

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 51

When do I need to use std::launder?

When you want to re-use the storage of

const heap objects,
base classes, or
[[no_unique_address]] members.

Never?

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 52

When do I need to use std::launder?

When you want to re-use the storage of

const heap objects,
base classes, or
[[no_unique_address]] members.

Never?

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 52

Level 4: Implicit object creation

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 53

Level 4: Implicit object creation

Object creation
[intro.object]/1

An object is created […] by an operation that implicitly creates objects.

int* ptr = static_cast<int*>(std::malloc(sizeof(int)));
*ptr = 11; // should not be UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 54

Level 4: Implicit object creation

Object creation
[intro.object]/1

An object is created […] by an operation that implicitly creates objects.

int* ptr = static_cast<int*>(std::malloc(sizeof(int)));
*ptr = 11; // should not be UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 54

Implicit object creation

Definition
[intro.object]/11

For each operation that is specified as implicitly creating objects, that operation implicitly
creates and starts the lifetime of zero or more objects of implicit-lifetime types in its
specified region of storage if doing so would result in the program having defined be-
havior. If no such set of objects would give the program defined behavior, the behavior of
the program is undefined. If multiple such sets of objects would give the program defined
behavior, it is unspecified which such set of objects is created.

If it helps you, the compiler creates objects for you.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 55

Implicit object creation

Definition
[intro.object]/11

For each operation that is specified as implicitly creating objects, that operation implicitly
creates and starts the lifetime of zero or more objects of implicit-lifetime types in its
specified region of storage if doing so would result in the program having defined be-
havior. If no such set of objects would give the program defined behavior, the behavior of
the program is undefined. If multiple such sets of objects would give the program defined
behavior, it is unspecified which such set of objects is created.

If it helps you, the compiler creates objects for you.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 55

Implicit lifetime type

Definition
[basic.types.general]/9

Scalar types, implicit-lifetime class types, array types, and cv-qualified versions of these
types are collectively called implicit-lifetime types.

[class.prop]/9
A class S is an implicit-lifetime class if

it is an aggregate whose destructor is not user-provided or
it has at least one trivial eligible constructor and a trivial, non-deleted
destructor.

Construction and destruction do nothing.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 56

Implicit lifetime type

Definition
[basic.types.general]/9

Scalar types, implicit-lifetime class types, array types, and cv-qualified versions of these
types are collectively called implicit-lifetime types.

[class.prop]/9
A class S is an implicit-lifetime class if

it is an aggregate whose destructor is not user-provided or
it has at least one trivial eligible constructor and a trivial, non-deleted
destructor.

Construction and destruction do nothing.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 56

Which operations implicitly create objects?

1 std::malloc and variants, ::operator new, std::allocator::allocate, and other
allocation functions.

int* ptr = static_cast<int*>(std::malloc(sizeof(int))); // create an int
*ptr = 11;

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 57

Which operations implicitly create objects?

2 Anything that starts the lifetime of an unsigned char/std::byte array.

alignas(int) unsigned char buffer[sizeof(int)]; // create an int
int* ptr = reinterpret_cast<int*>(buffer);
*ptr = 11;

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 58

Which operations implicitly create objects?

2 Anything that starts the lifetime of an unsigned char/std::byte array.

alignas(int) unsigned char buffer[sizeof(int)]; // create an int
int* ptr = std::launder(reinterpret_cast<int*>(buffer));
*ptr = 11;

P3006 makes std::launder unnecessary here.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 58

Which operations implicitly create objects?

3 std::memcpy and std::memmove
alignas(int) char buffer[sizeof(int)]; // creates nothing
std::memcpy(buffer, &some_int, sizeof(int)); // create an int
int* ptr = std::launder(reinterpret_cast<int*>(buffer));
std::print("*ptr = {}\n", ptr); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 59

Which operations implicitly create objects?

4 Implementation-defined set of operations like mmap or VirtualAlloc.
int* ptr = static_cast<int*>(mmap(…)); // create an int
std::print("*ptr = {}\n", *ptr); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 60

Implicit object creation uses time travel

static_assert(
sizeof(int) == sizeof(float) && alignof(int) == alignof(float)

);

alignas(int) unsigned char buffer[sizeof(int)]; // create int or float
if (rand() % 2)

std::launder(reinterpret_cast<int>(buffer)) = 11;
else

std::launder(reinterpret_cast<float>(buffer)) = 3.14f;

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 61

Implicit object creation does not prevent UB

static_assert(
sizeof(int) == sizeof(float) && alignof(int) == alignof(float)

);

int i = 11;
float f = *std::launder(reinterpret_cast<float*>(&i)); // still UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 62

Explicit implicit object creation

struct data {
std::uint8_t op;
std::uint32_t a, b, c;

};

void process(unsigned char* buffer, std::size_t size) {
data* ptr = std::launder(reinterpret_cast<data*>(buffer));
std::print("*ptr = {}\n", *ptr); // might be UB

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 63

Explicit implicit object creation

struct data {
std::uint8_t op;
std::uint32_t a, b, c;

};

void process(unsigned char* buffer, std::size_t size) {
data* ptr = ::new(static_cast<void*>(buffer)) data;
std::print("*ptr = {}\n", *ptr); // okay, but could be wrong

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 63

Explicit implicit object creation

struct data {
std::uint8_t op;
std::uint32_t a, b, c;

};

void process(unsigned char* buffer, std::size_t size) {
data* ptr = std::start_lifetime_as<data>(buffer);
std::print("*ptr = {}\n", *ptr); // okay

}

Also std::start_lifetime_as_array<data>(ptr, count).

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 63

Implementing std::start_lifetime_as

template <typename T>
T* start_lifetime_as(void* ptr) {

std::memmove(ptr, ptr, sizeof(T));
return std::launder(static_cast<T*>(ptr));

}

Standard library implementation is a no-op that also works for const.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 64

Implicit destruction of objects

Definition
[basic.life]/1

The lifetime of an object o of type T ends when:
if T is a non-class type, the object is destroyed, or
if T is a class type, the destructor call starts, or
the storage which the object occupies is released, or is reused by an object that
is not nested within o.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 65

Implicit destruction of objects

Definition
[basic.life]/1

The lifetime of an object o of type T ends when:
if T is a non-class type, the object is destroyed, or
if T is a class type, the destructor call starts, or
the storage which the object occupies is released, or is reused by an object that
is not nested within o.

int main() {
int x = 11;
::new(static_cast<void*>(&x)) int(42); // end + start lifetime
std::print("x = {}\n", x);

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 65

Implicit destruction of objects

Definition
[basic.life]/1

The lifetime of an object o of type T ends when:
if T is a non-class type, the object is destroyed, or
if T is a class type, the destructor call starts, or
the storage which the object occupies is released, or is reused by an object that
is not nested within o.

int main() {
alignas(int) unsigned char buffer[sizeof(int)]; // start lifetime
int* ptr = ::new(static_cast<void*>(buffer)) int(11); // end + start lifetime
std::print("*ptr = {}\n", *ptr);

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 65

Memory leaks are not undefined behavior

int main() {
std::string str = "long string so we don't have SSO";
::new(static_cast<void*>(&str)) std::string("a different long string");
std::print("str = {}\n", str);

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 66

Level 5: Provenance

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 67

Pointers aren’t just addresses

void do_sth(int* ptr);

int foo() {
int x, y;
y = 11;

do_sth(&x);
return y; // optimize to return 11

}

void do_sth(int* ptr) {
*(ptr + 1) = 42;

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 68

Pointers aren’t just addresses

void do_sth(int* ptr);

int foo() {
int x, y;
y = 11;

do_sth(&x);
return y; // optimize to return 11

}

void do_sth(int* ptr) {
*(ptr + 1) = 42;

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 68

Pointers aren’t just addresses

void do_sth(int* ptr);

int foo() {
int x, y;
y = 11;
if (&x + 1 == &y)

do_sth(&x);
return y; // optimize to return 11!?

}

void do_sth(int* ptr) {
*(ptr + 1) = 42;

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 68

Pointers aren’t just addresses

Just because two pointers are equal doesn't mean they
point to the same object!

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 69

Pointer provenance

Definition
A pointer T* is logically a pair (address, provenance):

The address is the only thing that is physically observable.
The provenance identifies to the object or allocation the pointer was derived from.

A pointer dereference is only valid if:
The address is in the range of allowed addresses for the provenance.
The current provenance of that address is the same as the provenance of the pointer.

The pointer provenance cannot be changed using pointer arithmetic!

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 70

Pointer provenance

Definition
A pointer T* is logically a pair (address, provenance):

The address is the only thing that is physically observable.
The provenance identifies to the object or allocation the pointer was derived from.

A pointer dereference is only valid if:
The address is in the range of allowed addresses for the provenance.
The current provenance of that address is the same as the provenance of the pointer.

The pointer provenance cannot be changed using pointer arithmetic!

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 70

Pointer provenance

Definition
A pointer T* is logically a pair (address, provenance):

The address is the only thing that is physically observable.
The provenance identifies to the object or allocation the pointer was derived from.

A pointer dereference is only valid if:
The address is in the range of allowed addresses for the provenance.
The current provenance of that address is the same as the provenance of the pointer.

The pointer provenance cannot be changed using pointer arithmetic!

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 70

Pointer provenance

Address not in range:
int foo() {

int x, y;
y = 11;
if (&x + 1 == &y)

do_sth(&x);
return y;

}

void do_sth(int* ptr) {
*(ptr + 1) = 42; // UB, address not in range

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 71

Pointer provenance

Different provenance:
const int* ptr = new const int(11); // provenance A
std::destroy_at(ptr);
int* new_ptr = ::new(static_cast<void*>(ptr)) int(42); // provenance B

std::print("*new_ptr = {}\n", *new_ptr); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 72

Pointer provenance

Different provenance:
const int* ptr = new const int(11); // provenance A
std::destroy_at(ptr);
int* new_ptr = ::new(static_cast<void*>(ptr)) int(42); // provenance B

std::print("*new_ptr = {}\n", *new_ptr); // okay
std::print("*ptr = {}\n", *ptr); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 72

Pointer provenance

Different provenance:
const int* ptr = new const int(11); // provenance A
std::destroy_at(ptr);
int* new_ptr = ::new(static_cast<void*>(ptr)) int(42); // provenance B

std::print("*new_ptr = {}\n", *new_ptr); // okay
std::print("*ptr = {}\n", *ptr); // UB
std::print("*ptr = {}\n", *std::launder(ptr)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 72

References have provenance too

const int* ptr = new const int(11);
const int& ref = *ptr;
std::destroy_at(ptr);
::new(static_cast<void*>(ptr)) int(42);

std::print("ref = {}\n", ref); // UB
std::print("ref = {}\n", *std::launder(&ref)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 73

Provenance changes

Provenance
Each object has a unique provenance.
All objects in an array have the same provenance.
Re-using the memory of an object changes the provenance unless the object is transparently
replaced.

Use std::launder to update the provenance of an object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 74

Provenance changes

Provenance
Each object has a unique provenance.
All objects in an array have the same provenance.
Re-using the memory of an object changes the provenance unless the object is transparently
replaced.

Use std::launder to update the provenance of an object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 74

Level 6: Type punning

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 75

Strict aliasing

static_assert(
sizeof(int) == sizeof(float) && alignof(int) == alignof(float)

);

int i = 11;
int* i_ptr = &i; // okay
float* f_ptr = reinterpret_cast<float*>(i_ptr); // okay?
std::print("*f_ptr = {}\n", *f_ptr); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 76

Strict aliasing violations

Colloquial: You can’t reinterpret_cast between unrelated types.

Strict aliasing rule
[basic.lval]/11

If a program attempts to access the stored value of an object through a glvalue whose
type is not similar to one of the following types the behavior is undefined:

the dynamic type of the object, […]

You can’t access an object through a pointer of an unrelated type.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 77

Strict aliasing violations

Colloquial: You can’t reinterpret_cast between unrelated types.

Strict aliasing rule
[basic.lval]/11

If a program attempts to access the stored value of an object through a glvalue whose
type is not similar to one of the following types the behavior is undefined:

the dynamic type of the object, […]

You can’t access an object through a pointer of an unrelated type.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 77

General rule

The type of a pointer or reference is only relevant when
accessing the referred object.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 78

No strict aliasing violation

int i = 11;
float* f_ptr = ::new(static_cast<void*>(&i)) float(3.14);
std::print("*f_ptr = {}\n", *f_ptr); // okay
std::print("i = {}\n", i); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 79

No strict aliasing violation

int i = 11;
float* f_ptr = std::start_lifetime_as<float>(&i);
std::print("*f_ptr = {}\n", *f_ptr); // okay
std::print("i = {}\n", i); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 79

Be careful about getting the pointer

int i = 11;
float* f_ptr = reinterpret_cast<float*>(&i);
::new(static_cast<void*>(&i)) float(3.14);
std::print("*f_ptr = {}\n", *f_ptr); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 80

Be careful about getting the pointer

int i = 11;
::new(static_cast<void*>(&i)) float(3.14);
float* f_ptr = reinterpret_cast<float*>(&i);
std::print("*f_ptr = {}\n", *f_ptr); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 80

Be careful about getting the pointer

int i = 11;
float* f_ptr = ::new(static_cast<void*>(&i)) float(3.14);
std::print("*f_ptr = {}\n", *f_ptr); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 80

Be careful about getting the pointer

int i = 11;
float* f_ptr = reinterpret_cast<float*>(&i);
::new(static_cast<void*>(&i)) float(3.14);
std::print("*f_ptr = {}\n", *std::launder(f_ptr)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 80

This currently also applies to unsigned char

alignas(int) unsigned char buffer[sizeof(int)];
int* ptr = reinterpret_cast<int*>(buffer);
*ptr = 11;

I consider this a bug in the standard, P3006 fixes it.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 81

This currently also applies to unsigned char

alignas(int) unsigned char buffer[sizeof(int)];
int* ptr = reinterpret_cast<int*>(buffer);
*ptr = 11;

I consider this a bug in the standard, P3006 fixes it.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 81

When do I need to use std::launder?

When you want to re-use the storage of

const heap objects,
base classes,
[[no_unique_address]] members.

Or when re-using memory as storage for a different type.

Never2.

2Terms and conditions may apply

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 82

When do I need to use std::launder?

When you want to re-use the storage of

const heap objects,
base classes,
[[no_unique_address]] members.

Or when re-using memory as storage for a different type.

Never2.

2Terms and conditions may apply
Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 82

Strict aliasing exceptions

Strict aliasing rule
[basic.lval]/11

If a program attempts to access the stored value of an object through a glvalue whose
type is not similar to one of the following types the behavior is undefined:

the dynamic type of the object,
a type that is the signed or unsigned type corresponding to the dynamic type of
the object, or
a char, unsigned char, or std::byte type.

int i = -1;
std::print("{}\n", *reinterpret_cast<unsigned*>(&i)); // okay
std::print("{}\n", *reinterpret_cast<std::byte*>(&i)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 83

Object representation

Idea: Allow access to the object representation, the sequence of bytes the object represents in
memory.
int object = 11;
std::byte* ptr = reinterpret_cast<std::byte*>(&object);
for (auto i = 0z; i != sizeof(object); ++i) {

std::print("{:02x} ", static_cast<int>(*ptr++));
}

In practice: Currently UB due to a bug in the standard, P1839 fixes it.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 84

Object representation

Idea: Allow access to the object representation, the sequence of bytes the object represents in
memory.
int object = 11;
std::byte* ptr = reinterpret_cast<std::byte*>(&object);
for (auto i = 0z; i != sizeof(object); ++i) {

std::print("{:02x} ", static_cast<int>(*ptr++));
}

In practice: Currently UB due to a bug in the standard, P1839 fixes it.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 84

Type punning

Goal: Interpret bytes stored in object of type T1 as an object of type T2.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 85

Type punning with std::start_lifetime_as works

int i = 11;
std::print("float = {}\n", *reinterpret_cast<float*>(&i)); // UB
std::print("float = {}\n", *std::start_lifetime_as<float>(&i)); // okay

You can’t use the old name/pointer/reference after the cast!
int i = 11;
std::print("float = {}\n", *std::start_lifetime_as<float>(&i)); // okay
std::start_lifetime_as<int>(&i);
std::print("int = {}\n", i); // UB!
std::print("int = {}\n", *std::launder(&i)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 86

Type punning with std::start_lifetime_as works

int i = 11;
std::print("float = {}\n", *reinterpret_cast<float*>(&i)); // UB
std::print("float = {}\n", *std::start_lifetime_as<float>(&i)); // okay

You can’t use the old name/pointer/reference after the cast!

int i = 11;
std::print("float = {}\n", *std::start_lifetime_as<float>(&i)); // okay
std::start_lifetime_as<int>(&i);
std::print("int = {}\n", i); // UB!
std::print("int = {}\n", *std::launder(&i)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 86

Type punning with std::start_lifetime_as works

int i = 11;
std::print("float = {}\n", *reinterpret_cast<float*>(&i)); // UB
std::print("float = {}\n", *std::start_lifetime_as<float>(&i)); // okay

You can’t use the old name/pointer/reference after the cast!
int i = 11;
std::print("float = {}\n", *std::start_lifetime_as<float>(&i)); // okay
std::start_lifetime_as<int>(&i);
std::print("int = {}\n", i); // UB!
std::print("int = {}\n", *std::launder(&i)); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 86

Type punning via std::memcpy works

int i = 11;
float f;
std::memcpy(&f, &i, sizeof(f));
std::print("f = {}\n", f); // okay
std::print("i = {}\n", i); // also okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 87

Type punning via std::bit_cast works

int i = 11;
float f = std::bit_cast<float>(i);
std::print("f = {}\n", f); // okay
std::print("i = {}\n", i); // also okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 88

Type punning for parent struct works

struct A {
int member;

};

A a{.member = 11};
int* i_ptr = reinterpret_cast<int*>(&a);
std::print("*i_ptr = {}\n", *i_ptr); // okay
std::print("member = {}\n",

reinterpret_cast<A*>(i_ptr)->member // also okay
);

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 89

Type punning for parent struct works

Definition
[basic.compound]/4

If two objects are pointer-interconvertible, then they have the same address, and it is
possible to obtain a pointer to one from a pointer to the other via a reinterpret_cast.

[basic.compound]/4
Two objects a and b are pointer-interconvertible if:

they are the same object, or
one is a union object and the other is a non-static data member of that object, or
one is a standard-layout class object and the other is the first non-static data
member of that object or any base class subobject of that object, or
there exists an object c such that a and c are pointer-interconvertible, and c and b
are pointer-interconvertible.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 90

Type punning for parent struct works

Definition
[basic.compound]/4

If two objects are pointer-interconvertible, then they have the same address, and it is
possible to obtain a pointer to one from a pointer to the other via a reinterpret_cast.

[basic.compound]/4
Two objects a and b are pointer-interconvertible if:

they are the same object, or
one is a union object and the other is a non-static data member of that object, or
one is a standard-layout class object and the other is the first non-static data
member of that object or any base class subobject of that object, or
there exists an object c such that a and c are pointer-interconvertible, and c and b
are pointer-interconvertible.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 90

Type punning via union does not work

Object creation
[intro.object]/1

An object is created […] when implicitly changing the active member of a union.

union U {
int i;
float f;

};
U u{.i = 11};
u.f = 3.14f;
std::print("u.f = {}\n", u.f); // okay
std::print("u.i = {}\n", u.i); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 91

Type punning via union does not work

Object creation
[intro.object]/1

An object is created […] when implicitly changing the active member of a union.

union U {
int i;
float f;

};
U u{.i = 11};
u.f = 3.14f;
std::print("u.f = {}\n", u.f); // okay
std::print("u.i = {}\n", u.i); // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 91

Aside: Common initial sequence

Definition
[class.mem.general]/26

In a standard-layout union with an active member of struct type T1, it is permitted to read
a non-static data member m of another union member of struct type T2 provided m is
part of the common initial sequence of T1 and T2; the behavior is as if the corresponding
member of T1 were nominated.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 92

Aside: Common initial sequence

union U {
struct A {

int prefix;
int i;

} a;
struct B {

int prefix;
float f;

} b;
};
U u{.a = {.prefix = 0, .i = 11}};
std::print("prefix = {}\n", u.a.prefix); // okay
std::print("prefix = {}\n", u.b.prefix); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 93

Level 7: Invalid and zombie pointers

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 94

Access outside of lifetime

[basic.life]/6
Before the lifetime of an object has started but after the storage which the object will
occupy has been allocated or, after the lifetime of an object has ended and before the
storage which the object occupied is reused or released, any pointer that represents the
address of the storage location where the object will be or was locatedmay be used but
only in limited ways.

[basic.life]/7
Similarly, before the lifetime of an object has started but after the storage which the
object will occupy has been allocated or, after the lifetime of an object has ended and
before the storage which the object occupied is reused or released, any glvalue that
refers to the original object may be used but only in limited ways.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 95

Access outside of lifetime

int x = 11;
std::destroy_at(&x);

int* ptr1 = &x; // okay
int& ref1 = x; // okay
int* ptr2 = &ref1; // okay
int& ref2 = *ptr2; // okay

assert(ptr1 == ptr2); // okay

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 96

Access outside of lifetime

int x = 11;
std::destroy_at(&x);

int y = x; // UB
int* ptr = &x;
int z = *ptr; // UB

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 96

Access outside of lifetime

Undefined behavior if such a pointer or reference is used:

to access the value of the object,

to call a non-static member function on the object,
to delete the object,
for anything to do with virtual base classes or dynamic_cast.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 97

Access outside of lifetime

Undefined behavior if such a pointer or reference is used:

to access the value of the object,
to call a non-static member function on the object,

to delete the object,
for anything to do with virtual base classes or dynamic_cast.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 97

Access outside of lifetime

Undefined behavior if such a pointer or reference is used:

to access the value of the object,
to call a non-static member function on the object,
to delete the object,

for anything to do with virtual base classes or dynamic_cast.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 97

Access outside of lifetime

Undefined behavior if such a pointer or reference is used:

to access the value of the object,
to call a non-static member function on the object,
to delete the object,
for anything to do with virtual base classes or dynamic_cast.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 97

Access outside of lifetime

[basic.life]/6
Before the lifetime of an object has started but after the storage which the object will
occupy has been allocated or, after the lifetime of an object has ended and before the
storage which the object occupied is reused or released, any pointer that represents
the address of the storage location where the object will be or was located may be used
but only in limited ways.

[basic.life]/7
Similarly, before the lifetime of an object has started but after the storage which the
object will occupy has been allocated or, after the lifetime of an object has ended and
before the storage which the object occupied is reused or released, any glvalue that
refers to the original object may be used but only in limited ways.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 98

Invalid pointers

Pointer lifetime-end zap
[basic.stc.general]/4

When the end of the duration of a region of storage is reached, the values of all point-
ers representing the address of any part of that region of storage become invalid pointer
values. Indirection through an invalid pointer value and passing an invalid pointer value
to a deallocation function have undefined behavior. Any other use of an invalid pointer
value has implementation-defined behavior.

[basic.stc.general]/Footnote 24
Some implementations might define that copying an invalid pointer value causes a system-
generated runtime fault.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 99

Invalid pointers

int main() {
int x = 11;
int* ptr = &x;
std::destroy_at(&x);
std::print("*ptr = {}\n", *ptr); // UB
std::print("ptr == nullptr? {}\n",

ptr == nullptr // okay
);

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 100

Invalid pointers

int main() {

int* ptr = new int;
delete ptr;
std::print("*ptr = {}\n", *ptr); // UB
std::print("ptr == nullptr? {}\n",

ptr == nullptr // implementation-defined
);

}

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 100

LIFO push

Taken from P2414R2.
struct list {

std::atomic<node*> _top;
void push(node* new_node) {

while (true) {
auto old_top = _top.load();
new_node->set_next(old_top);
if (_top.compare_exchange_weak(old_top, new_node)) return;

}
}
node* pop_all() {

return _top.exchange(nullptr);
}

};

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 101

https://wg21.link/p2414r2

LIFO push can lead to invalid pointer

_top

old_top

node 1@ A

node 2@ B

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).
Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 102

LIFO push can lead to invalid pointer

_top

old_top

node 1@ A

node 2@ B

Thread T1
Allocate node 2.

Execute auto old_top =
_top.load() and
new_node->set_next(old_top).
Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 102

LIFO push can lead to invalid pointer

_top

old_top

node 1@ A

node 2@ B

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).

Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 102

LIFO push can lead to invalid pointer

_top

old_top

node 1@ A

node 2@ B

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).

Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 102

LIFO push can lead to invalid pointer

_top

old_top

node 1@ A

node 2@ B

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).
Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 102

LIFO push can lead to zombie pointer

_top

old_top

node 1@ A

node 2@ B

node 3@ A

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).

Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.

Allocate node 3 which re-uses location of
1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 103

LIFO push can lead to zombie pointer

_top

old_top

node 1@ A

node 2@ B

node 3@ A

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).

Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.
Allocate node 3 which re-uses location of
1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 103

LIFO push can lead to zombie pointer

_top

old_top

node 1@ A

node 2@ B

node 3@ A

Thread T1
Allocate node 2.
Execute auto old_top =
_top.load() and
new_node->set_next(old_top).
Execute compare_exchange_weak;
implementation-defined!

Thread T2
Execute pop_all().
Delete node 1.
Allocate node 3 which re-uses location of
1.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 103

LIFO push can lead to zombie pointer

What is the result of the comparison?

If the comparison returns true because the addresses are the same, node 2’s next pointer
has the wrong provenance for access.
If the comparison returns false because the provenance is different, it is not implementable in
hardware.

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 104

Solution

This is a bug in the C++ standard.

Proposed solution: (P2434)

Make comparison of invalid pointer values meaningful.
Implicitly pick a valid pointer value when casting std::uintptr_t to T*

auto old_top = reinterpret_cast<node*>(
reinterpret_cast<std::uintptr_t>(_top.load())

);

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 105

Solution

This is a bug in the C++ standard.
Proposed solution: (P2434)

Make comparison of invalid pointer values meaningful.
Implicitly pick a valid pointer value when casting std::uintptr_t to T*

auto old_top = reinterpret_cast<node*>(
reinterpret_cast<std::uintptr_t>(_top.load())

);

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 105

Conclusion

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 106

Personal guidelines

Don’t rely on implicit object creation:

Use placement new to explicitly create a new object.
Use std::start_lifetime_as to re-interpret raw bytes as an object.

Whenever possible, use the pointer from placement new and std::start_lifetime_as
directly.
Use union { char empty; T t; } instead of alignas(T) unsigned char
buffer[sizeof(T)].

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 107

Personal guidelines

Don’t rely on implicit object creation:
Use placement new to explicitly create a new object.

Use std::start_lifetime_as to re-interpret raw bytes as an object.
Whenever possible, use the pointer from placement new and std::start_lifetime_as
directly.
Use union { char empty; T t; } instead of alignas(T) unsigned char
buffer[sizeof(T)].

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 107

Personal guidelines

Don’t rely on implicit object creation:
Use placement new to explicitly create a new object.
Use std::start_lifetime_as to re-interpret raw bytes as an object.

Whenever possible, use the pointer from placement new and std::start_lifetime_as
directly.
Use union { char empty; T t; } instead of alignas(T) unsigned char
buffer[sizeof(T)].

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 107

Personal guidelines

Don’t rely on implicit object creation:
Use placement new to explicitly create a new object.
Use std::start_lifetime_as to re-interpret raw bytes as an object.

Whenever possible, use the pointer from placement new and std::start_lifetime_as
directly.

Use union { char empty; T t; } instead of alignas(T) unsigned char
buffer[sizeof(T)].

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 107

Personal guidelines

Don’t rely on implicit object creation:
Use placement new to explicitly create a new object.
Use std::start_lifetime_as to re-interpret raw bytes as an object.

Whenever possible, use the pointer from placement new and std::start_lifetime_as
directly.
Use union { char empty; T t; } instead of alignas(T) unsigned char
buffer[sizeof(T)].

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 107

Conclusion

We're hiring: think-cell.com/en/career/dev

Developer blog: think-cell.com/en/career/devblog/overview

jonathanmueller.dev/talk/lifetime

@foonathan@fosstodon.org
youtube.com/@foonathan

Jonathan Müller — @foonathan An (In-)Complete Guide to C++ Object Lifetimes C++ on Sea 2024-07-04 108

https://www.think-cell.com/en/career/dev
https://www.think-cell.com/en/career/devblog/overview
https://jonathanmueller.dev/talk/lifetime
https://fosstodon.org/@foonathan
https://youtube.com/@foonathan

	What are objects and lifetime?
	Level 0: Variable declaration
	Level 1: new and delete
	Level 2: Temporary objects
	Level 3: Placement new
	Level 4: Implicit object creation
	Level 5: Provenance
	Level 6: Type punning
	Level 7: Invalid and zombie pointers
	Conclusion

